In New Haven, Connecticut, where I live with my husband and two sons, we are lucky to have nearby the
Eli Whitney Museum. This place is the opposite of a
please don't touch repository
of fine art. It's an "experimental learning workshop" where kids engage
in an essential but increasingly rare activity: they make stuff. Right
now, looking around my living room, I can see lots of the stuff made
there by my older son: a model ship that can move around in water with
the aid of a battery-powered motor he put together; a "camera obscura"
that can project a real-world scene onto a wall in a darkened room; a
wooden pinball game he designed himself. (You can view an archive of Eli
Whitney Museum projects
here.)
The
people who run Eli Whitney call these hands-on projects "experiments."
As they put it: "Experiments are a way of learning things. They require
self-guided trial and error, active exploration, and testing by all the
senses. Experiments begin with important questions, questions that make
you think or that inspire you to create." This process of exploring,
testing and finding out is vital to children's intellectual and
psychological development—but opportunities to engage in it are fewer
than they once were. “My friends and I grew up playing around in the
garage, fixing our cars,” says Frank Keil, a Yale University
psychologist who is in his early 60's. “Today kids are sealed in a
silicon bubble. They don’t know how anything works.”
Many others
have noticed this phenomenon. Engineering professors report that
students now enter college without the kind of hands-on expertise they
once unfailingly possessed. At the Massachusetts Institute of
Technology, “we scour the country looking for young builders and
inventors,” says Kim Vandiver, dean for undergraduate research. “They’re
getting harder and harder to find.” MIT now offers classes and
extracurricular activities devoted to taking things apart and putting
them together, an effort to teach students the skills their fathers and
grandfathers learned curbside on weekend afternoons.
Why should
this matter? Some would argue that the digital age has rendered such
technical know-how obsolete. Our omnipresent devices work the way we
want them to (well, most of the time), with no skill required beyond
pushing a button. What’s to be gained by knowing how they work?
Actually,
a lot. Research in the science of learning shows that hands-on building
projects help young people conceptualize ideas and understand issues in
greater depth. In an
experiment described in the
International Journal of Engineering Education in
2009, for example, one group of eighth-graders was taught about water
resources in the traditional way: classroom lectures, handouts and
worksheets. Meanwhile, a group of their classmates explored the same
subject by designing and constructing a water purification device. The
students in the second group learned the material better: they knew more
about the importance of clean drinking water and how it is produced,
and they engaged in deeper and more complex thinking in response to
open-ended questions on water resources and water quality.
If we
want more young people to choose a profession in one of the group of
crucial fields known as STEM—science, technology, engineering and
math—we ought to start cultivating these interests and skills early. But
the way to do so may not be the kind of highly structured and directed
instruction that we usually associate with these subjects. Instead, some
educators have begun taking seriously an activity often dismissed as a
waste of time: tinkering. Tinkering is the polar opposite of the
test-driven, results-oriented approach of No Child Left Behind: it
involves a loose process of trying things out, seeing what happens,
reflecting and evaluating, and trying again.
“Tinkering is the way that real science happens, in all its messy glory," says Sylvia Martinez, co-author of the new
book Invent To Learn: Making, Tinkering, and Engineering in the Classroom. Martinez
is one of the leaders of the "makers' movement," a nationwide effort to
help kids discover the value of getting their hands dirty and their
minds engaged. The next generation of scientists—and artists, and
inventors, and entrepreneurs—may depend on it.